Continuous degradation of maltose by enzyme entrapment technology using calcium alginate beads as a matrix
نویسندگان
چکیده
Maltase from Bacillus licheniformis KIBGE-IB4 was immobilized within calcium alginate beads using entrapment technique. Immobilized maltase showed maximum immobilization yield with 4% sodium alginate and 0.2 M calcium chloride within 90.0 min of curing time. Entrapment increases the enzyme-substrate reaction time and temperature from 5.0 to 10.0 min and 45 °C to 50 °C, respectively as compared to its free counterpart. However, pH optima remained same for maltose hydrolysis. Diffusional limitation of substrate (maltose) caused a declined in Vmax of immobilized enzyme from 8411.0 to 4919.0 U ml-1 min-1 whereas, Km apparently increased from 1.71 to 3.17 mM ml-1. Immobilization also increased the stability of free maltase against a broad temperature range and enzyme retained 45% and 32% activity at 55 °C and 60 °C, respectively after 90.0 min. Immobilized enzyme also exhibited recycling efficiency more than six cycles and retained 17% of its initial activity even after 6th cycles. Immobilized enzyme showed relatively better storage stability at 4 °C and 30 °C after 60.0 days as compared to free enzyme.
منابع مشابه
Bioaffinity Based Immobilization of Almond (Amygdalus communis) b-galactosidase on Con A-layered Calcium Alginate-cellulose Beads: Its Application in Lactose Hydrolysis in Batch and Continuous Mode
In this study, immobilization of partially purified almond (Amygdalus communis) β-galactosidase on Con A layered calcium alginate-cellulose beads was investigated. Immobilized β-galactosidase retained 72% of theinitial activity after crosslinking by glutaraldehyde. Both soluble and immobilized enzyme exhibited the samepH and temperature optima at pH 5.5 and 50ºC, respectively. Howev...
متن کاملCyclodextrin-linked alginate beads as supporting materials for Sphingomonas cloacae, a nonylphenol degrading bacteria.
Calcium alginate beads covalently linked with alpha-cyclodextrin (alpha-CD-alginate beads) were prepared and examined for their ability to serve as a supporting matrix for bacterial degradation of nonylphenol, an endocrine disruptor. Column chromatographic experiment using alpha-CD-alginate beads with diameter of 657+/-82 microm and with degree of CD substitution of 0.16 showed a strong affinit...
متن کاملAddition of Fillers to Sodium Alginate Solution Improves Stability and Immobilization Capacity of the Resulting Calcium Alginate Beads
Background: Although advantages of immobilization of cells through entrapment in calcium alginate gel beads have already been demonstrated, nevertheless, instability of the beads and the mass transfer limitations remain as the major challenges.Objective: The objective of the present study was to increase the stability, porosity (reduce mass transfer limit...
متن کاملOptimization of Lipase Immobilization
Pseudomonas aeruginosa BBRC-10036 was used for lipase production. The organism secreted the enzyme extracellulary. In order to purify the enzyme, precipitation was done first, and then this lipase has been purified by Ion exchange Chromatography leading to 2.3-fold purification and 11.47% recovery. Lipase from P.aeruginosa was entrapped into Ca-alginate gel beads and effect of independent varia...
متن کاملDevelopment and evaluation of a calcium alginate based oral ceftriaxone sodium formulation
The purpose of this work was to develop a multiparticulate system exploiting the pH-sensitive property and biodegradability of calcium alginate beads for intestinal delivery of ceftriaxone sodium (CS). CS was entrapped in beads made of sodium alginate and sodium carboxymethylcellulose (CMC), acacia, HPMC K4M and HPMC K15M as drug release modifiers. Beads were prepared using calcium chloride as ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2015